Answers to Course 2 Unit 4 Practice

LESSON 13-1

1. a.

b.
$$3x + 51 = 180$$

 $x = 43$

c. One angle is 51°; the other angle is 129°.

2. B

3. C

4. $x = 38^{\circ}$

5. x = 21; $m \angle ZTS = 116^{\circ}$ and $\angle NRQ = 64^{\circ}$

LESSON 13-2

6. a. 74°

b. 106°

c. 74°

7. $x = 30^{\circ}$; The angles measure 123°, 36°, and 45°.

8. C

9. C

10. $A = 59^{\circ}$

 $B = 82^{\circ}$

 $C = 39^{\circ}$

 $D=90^{\circ}$

 $E = 51^{\circ}$

LESSON 14-1

11. a. Yes; 6 + 3 = 9, which is > 8.

b. Yes, 4 + 5 = 9, which is > 7.

c. No, 6 + 8 = 14, which is not > 16.

d. No, 7 + 7 = 14, which is not > 14.

12. Answers may vary. Any length greater than 4 and less than 11 inches is correct.

13. Check students' drawings.

14. D

15. B

LESSON 14-2

16. a. Unique; two angles and an included side form a unique triangle.

b. Unique; two angles and a side form a unique triangle.

c. More than one; a side length is also needed to determine a unique triangle.

d. Unique; three side lengths determine a unique triangle.

17. A

18. D

19. Three sides determine a unique triangle.

20. Yes, two sides and an included angle determine a unique triangle.

LESSON 15-1

21. C

22. a. $\angle A$ corresponds to $\angle E$, $\angle B$ corresponds to $\angle F$, $\angle C$ corresponds to $\angle G$, $\angle D$ corresponds to $\angle H$

b. \overline{AB} corresponds to \overline{EF} , \overline{BC} corresponds to \overline{FG} ,

 \overline{CD} corresponds to \overline{GH} , \overline{DA} corresponds to \overline{HE}

c. $\frac{AD}{EH} = \frac{BC}{FG} = \frac{8}{16}, \frac{DC}{HG} = \frac{AB}{EF} = \frac{10}{20}$

d. The corresponding sides are in proportion. The ratios of corresponding sides are equal to a common ratio of 1:2, the figures are in proportion.

e. The figures are similar; the corresponding angles are equal and the corresponding sides are in proportion.

23. Check students' drawings. The corresponding angles are congruent and the corresponding sides are proportional.

24. Yes, they are in the ratio 1:4.

25. B

LESSON 15-2

26. BC = 21 and ED = 18

27. C

28. a. Check students' drawings.

b. $\frac{x}{9} = \frac{4}{3}$; The flagpole is 12 feet tall.

29. I

30. 108 inches or 9 feet

LESSON 16-1

31. B

32. 113.04 inches

33. A

34. About 104 revolutions; 600 feet = 7,200 inches, Circumference is approximately 69.08 inches, $\frac{7,200}{69.08} \approx 104.2$

35. Diameter = 18 cm; radius = 9 cm.

LESSON 16-2

36. C

37. D

38. 452.16 cm²

39. a. π or 3.14 ft²

b. 109.96 ft²

40. 25.12 in.²; $3.14(8)^2 = 200.96$, $200.96 \div 8 = 25.12$

LESSON 17-1

41. a. 20 cm 8 cm

11 cm

b. 124 cm

c. 52 cm

42. C

43. 201.6 in.²

44. D

45. 630 in.²

LESSON 17-2

46. D

47 a. 9 feet

b. Area of rectangle = 8 ft by 15 ft = 120 ft. Area of semicircle is $\frac{1}{2}\pi r^2 = \frac{1}{2}(3.14)(16)$ = 25.12 ft². Total area = 120 + 25.12 = 145.12 ft².

c. Circumference of semicircle is $\frac{1}{2}\pi d = \frac{1}{2}(3.14)(8) = 12.56$ ft. Distance around three sides of rectangle = 15 + 8 + 15 = 38 ft. Total distance = 12.56 ft + 38 ft = 50.56 ft.

48. D

49. Area of the pan = πr^2 = (3.14)(36) = 113.04 in.² Area of the pizza = πr^2 = (3.14)(16) = 50.24 in.² Area of pan not covered = 113.04 in.² - 50.24 in.² = 62.8 in.²

50. Area of the triangle (cone) = $\frac{1}{2}bh = \frac{1}{2}(6)(10)$ = 30 ft². Area of the semi circle (ice cream) = $\frac{1}{2}\pi r^2 = \frac{1}{2}(3.14)(9) = 14.13$ ft². Total area = 30 + 14.13 = 44.13 ft².

LESSON 18-1

51. a. hexagonal prism

b. hexagon and square

52. triangle

53. B

54. C

55. No, there are no curves in a triangular prism.

LESSON 18-2

56. a. 28 m²; the dimensions of each lateral face are 4 m by 7 m, so the area of each lateral face is $4 \times 7 = 28$.

b. 168 m^2 ; $28 \text{ m}^2 \times 6 \text{ lateral faces} = 168 \text{ m}^2$

c. 24 m; 4 m \times 6 sides = 24 m

57. a. 120 ft²

b. 174 ft²

58. B

59. C

60. The two bases must be added to the lateral area to find the surface area of a rectangular prism.

LESSON 18-3

61. B

62. a. 92.7 cm²;

$$L = \frac{1}{2}P \times 1$$

$$L = \frac{1}{2} \times (6 + 6 + 6) \times 10.3 = 92.7$$

b. 123.6 cm²;

$$SA = \frac{1}{2} \times 6 \times 10.3 = 30.9 + 92.7 = 126.3$$

63. C

64. 126 in.²

65. 257.25 ft²

LESSON 19-1

66. 216 ft³

67. D

68. C

69. 54 cubes; $36 \div 4 = 9$, $12 \div 4 = 3$, $8 \div 4 = 2$. There are two layers of 9-by-3 cubes, for a total of 54 cubes.

70. 2736 in.³

LESSON 19-2

71. a. 5043 cm³

b. 1066 cm³

c. 6109 cm³

72. A

73. 1792 in.³

74. C

75. 10,976 cm³